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FREQUENCY ANALYSIS OF A ROTATING PLATE
WITH EXTERNAL BEAM-SUPPORTS
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The vibration characteristics of a rotating plate with external, radial beam-supports is
studied. A new approach that employs a mixed weighted residual method and the
receptance method is introduced. Numerical examples follow to demonstrate the ap-
proach and to show the variations of natural frequencies and critical speeds with rotation
speed. The results show that the beam-supports can raise some of plate’s natural
frequencies. The improvement of the first critical speed, however, relies on the number
and placement of supports. The beam-supports are further found to introduce additional
critical speeds after the first critical speed. Effects on the natural frequencies and critical
speeds, due to support stiffness and inertia ratios to the plate, are also discussed. It is
shown that higher modes are more sensitive to the supports’ properties.

7 1998 Academic Press Limited

1. INTRODUCTION

Rotating plates are of widespread occurrence in engineering applications: as, e.g., saw
blades, turbines, flywheels and computer disks. Hence, the vibration characteristics of
rotating plates have been investigated for years. Lamb and Southwell [1] derived the
equations for a rotating plate and solved for the natural frequencies and mode shapes.
Mote [2] employed the Rayleigh–Ritz method for the vibrations of disks with initial
stresses. Ramaiah [3] used the same method and analyzed rotating plates of eight
different combinations of boundary conditions. Adams [4] looked into the critical speeds
of spinning disks.

Lately, more researchers have focused on the dynamic behaviour of plates and their
connected structures. For instance, Shen and Mote [5] and Chen and Bogy [6, 7]
discussed the rotating plate with a stationary spring–mass–dashpot load to simulate a
rotating disk-head assembly. Leissa and Kirk [8] and Sinha [9] investigated the vibrations
of a plate with an outer ring reinforcement. Loh and Carney [10] discussed a plate with
edge beams reinforcement. Some research contributed to the vibration of plate with
external supports. Azimi extensively analyzed the vibration of a non-rotating plate with
elastic edge supports [11], with interior supports [12], and with point supports [13].
Huang and Hsu further discussed the rotating plate with interior point supports [14] and
with interior circular line supports [15]. In references [11–15] the receptance method was
utilized.

In Figure 1 is shown a rotating plate with external, radial beam-supports. To the
authors’ knowledge, there have been no studies concerning this system. The present
research is hence to develop an approach for the natural frequency analysis. The plate is
assumed to have a fixed-free boundary and to rotate at a constant speed V. The external
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Figure 1. A rotating plate with beam-supports on both sides.

beam-supports, connected to collars, are assumed to have the same boundary as the
plate. Moreover, the supports are assumed to provide a radial line restraint to the plate’s
transverse vibration: i.e., the contact friction is neglected.

The approach first employs a mixed weighted residual method to discretize the
equations, and then introduces the receptance method for the plate-supports connection.
Numerical examples for two to four supports are illustrated. Provided that the

T 1

The plate’s natural frequencies v*, compared with those of Vogel and Skinner (in square
brackets)

Clamping ratio, b/a
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

m n 0·1 0·3 0·5 0·7 0·9

0 0 4.23 6·67 13·03 36·95 344·34
[4·24] [6·66] [13·03] [36·95] [344·40]

0 1 3·50 6·55 13·29 37·50 345·10
[3·48] [6·55] [13·29] [37·50] [345·17]

0 2 5·65 7·96 14·70 39·27 347·40
[5·62] [7·96] [14·71] [39·28] [347·47]

0 3 12·51 13·32 18·58 42·65 351·32
[12·45] [13·28] [18·56] [42·66] [351·32]

1 0 25·35 42·63 85·03 239·85 2188·83
[25·26] [42·62] [85·03] [239·84] [2188·82]

1 1 27·78 44·65 86·71 241·25 2189·69
[27·67] [44·63] [86·71] [241·28] [2190·10]

1 2 37·02 50·97 91·74 245·55 2193·50
[36·94] [50·95] [91·74] [245·59] [2193·92]

1 3 53·23 62·09 100·17 252·70 2199·86
[53·20] [62·05] [100·17] [252·73] [2200·29]
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Figure 2. Decomposition of the beam-supported rotating plate.

beams and plate are of the same material and thickness, numerical results show that the
plate’s lowest few natural frequencies are raised by the beam-supports. The plate’s first
critical speed, however, is not always improved by the beam-supports. If the improve-
ment of critical speed is the major concern, the number of supports should be carefully
chosen to avoid the coincidence of supports with nodal diameters of the critical mode.
Finally, the variations of natural frequencies and critical speeds due to support stiffness
and inertia are discussed.

2. ROTATING PLATE EQUATIONS

A plate, of inner radius b, outer radius a, thickness hp , density rp , bending rigidity,
D=Eph3

p /12(1− n2) and rotation speed V, has the transverse vibration equation [14–16],

D94u−
hp

r $ 1

1r 0srr
1u
1r1+

1

1f 0sf 1u
r 1f1%+ rphp$12u

1t2 +2V
12u

1f1t
+V2 12u

1f2%= q(r, f, t),

(1)

where u(r, f, t) denotes the transverse displacement with respect to the inertia (r, f)
frame, and the biharmonic operator is of the form

94 =0 12

1r2 +
1

r1r
+

1
r2

12

1f21
2

. (2)

The initial stresses resulting from rotation [14–16] are

sr(r, V)=
(3+ n)

8
rpV

2(a2 − r2)+
rpV

2b2(1− n)[a2(3+ n)− b2(1+ n)]
8[b2(1− n)+ a2(1+ n)] 0a2

r2 −11, (3)

sf(r, V)=
rpV

2

8
[(3+ n)a2 − (1+3n)r2]

−
rpV

2b2(1− n)[a2(3+ n)− b2(1+ n)]
8[b2(1− n)+ a2(1+ n)] 0a2

r2 +11, (4)
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The clamped–free boundaries are

−D$12u
1r2 + n01r 1u

1r
+

1
r2

12u
1f21%r= a

=0, (5)

−D$ 1

1r
(92u)+

(1− n)
r

12

1r 1f 01r 1u
1f1%r= a

=0, (6)

u(r, f, t)vr= b =0, (7)

1u(r, f, t)
1r br= b

=0. (8)

First, from the modal expansion theory, the response of the spinning disk can be
expressed as

u(r, f, t)= s
M

m=0

s
N

n=0

[qc
mn (t) cos nf+ qs

mn (t) sin nf]Rmn (r), (9)

where qc
mn (t) and qs

mn (t) denote two undetermined, independent generalized co-ordinates.
Due to the existence of rotation, searching for exact solutions of Rmn (r) is infeasible.
Some researchers, e.g., Hutton et al. [14] and Huang and Hsu [12, 13] have used
polynomial functions. Lately, Huang and Chiou [15] have selected modified beam
functions that satisfied all the plate boundaries to solve for the plate responses due to
radially travelling forces and obtained satisfactory results. The present research selects
the straight beam functions for Rmn (r); i.e.,

Rm (r)= [sin bm (r− b)− sinh bm (r− b)]+ am [cos bm (r− b)− cosh bm (r− b)]. (10)

The selected functions satisfy the inner boundaries. They are functions of m (the nodal
circle) and yet are independent of n (the nodal diameter). Therefore, there exist not only
the interior but also the boundary residuals. A mixed weighted residual method is hence
applied.

Figure 3. A line load between the beam and the plate.
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T 2

The geometric and material properties of the plate and the
beam

Density, r 7·85×103 kg/m3

Young’s modulus, E 2·6×109 N/m2

Poisson’s ratio, n 0·3
Thickness, hp , hb 3·0 mm
Outer radius, a 100·0 mm
Inner radius, b 30·0 mm

The residuals of the plate are now defined as

eI =L[u]+ rphp$12u
1t2 +2V

12u
1f 1t

+V2 12u
1f2%− q(r, f, t),

eM =BM [u],

eV =BV [u], (11)

where L and B are linear differential operators:

L=D0 d2

dr2 +
d

r dr
−

n2

r21
2

−
hp

r $ d
dr 0srr

d
dr1−

n2

r
sf%, (12)

BM =−D$ d2

dr2 +
n

r
d
dr

−
nn2

r2 %r= a

, (13)

BV =−D$ d3

dr3 +
1
r

d2

dr2 −
1+ n2(1− n)

r2

d
dr

+
n2(3− n)

r3 %r= a

. (14)

The sum of the weighted residuals is required to be zero: i.e.,

g
a

b

Rm (r) · eI · r dr+$r+
dRm (r)

dr %r= a

eM +[rRm ]r= a eV =0, m=0, 1, 2, . . . . (15)

T 3

The beam and plate m=0 natural frequencies

Plate
ZXXXXXXXXCXXXXXXXXV

Beam n=0 n=1 n=2 n=3

8·62 6·67 6·55 7·96 13·32
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Figure 4. Variations of natural frequencies with rotation speeds for L=2. (a) k=2000 N/m2; (b) k=a.

The test functions are chosen so that all the boundary residuals yield consistent units.
After rearrangement, a set of differential equations for each n yields

s
M

m=0

(Gsm0q̈c
m0 +Fsm0qc

m0)=Qs0, n=0, (16)

s
M

m=0

{Gsmn Iq̈mn +GsmnGnq̈mn +(Fsmn − n2V2Gsmn )Iqmn}=Qsn ,

nq 0, s=0, 1, 2, . . . , M, (17)

where I is a 2×2 unit matrix and

Gsmn =g
a

b

Rm (r)Rs (r)r dr, (18)

Fsmn =
1

rphp 6g
a

b

L[Rm ]Rsr dr+BM [Rm ]$r dRm (r)
dr %r= a

+BV [Rm ][rRm ]r= a7, (19)

qmn =6qs
mn

qc
mn7, Gn =$ 0

2nV

−2nV

0 %, (20)
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Qs0 =
1

2rphpp g
a

b g
2p

0

Rs (r)q(r, f, t)r df dr, (21)

Qsn =
1

rphpp g
a

b g
2p

0

Rs (r)q(r, f, t)r6sin (nf)
cos (nf)7 df dr. (22)

Equation (17) yields a 2(M+1) order differential equations for each n. The natural
frequencies of m=0, 1, n=0, . . . , 3 were first solved by using a four-term (M=3)
approximation. The dimensionless frequencies, i.e., v*=v(rphpa4/D)1/2, are shown in
Table 1 and compared to those of Vogel [18]. The comparisons show excellent accuracy
of the present approach. The m=0 (zero nodal circle) modes of the plate are the
fundamentals and usually of primary interest. Numerical results have shown that if one
merely uses a one-term M=0 approximation, the errors compared to the four-term
results fell below 3% for a large range of clamping ratios. Thus, only the one-term
approximation need be considered when solving for the m=0 modes. The equations are
consequently simplified to be

q̈c
0(t)+C2

0qc
0(t)=Q0/G0, n=0, (23)

6q̈s
n

q̈c
n7+$ 0

2nV

−2nV

0 %6q̇s
n

q̇c
n7+$C2

n − n2V2

0
0

C2
n − n2V2%6qs

n

qc
n7=

Qn

Gn
, n$ 0 (24)

where C2
n =Fn /Gn . The subscripts s and m, both representing nodal circle number, are

dropped hereafter.

Figure 5. Variations of natural frequencies with rotation speeds for L=3. (a), (b) as Figure 4.
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Figure 6. Variations of natural frequencies with rotation speeds for L=4. (a), (b) as Figure 4.

3. BEAM EQUATIONS

Each support is treated as a clamped–free beam and it restricts the plate’s transverse
deflection. The distributed stiffness k(r) presents an additional external stiffness. One
could let k go to infinity if the supports were rigid. The equation of motion for the beam
is

(EbIb 14u/1r4)+ k(r)u+ rbAb 12u/1t2 = f(r, t), (25)

where u(r, t) and f(t) denote transverse displacement and the applied load. In the same
manner,

u(r, t)= s
M

m=0

nm (t) Rm (r). (26)

Substituting the equation (26) into equation (25) yields

ḧs + s
M

m=0

(v2
s dsm +Tsm /Ns )hm =

1
rbAbNs g

a

b

f(r, t)Rs (r) dr, s=0, 1, 2, . . . , M, (27)

where vs is the sth natural frequency of the beam and

Tsm =
1

rbAb g
a

b

k(r)Rm (r)Rs (r) dr, Ns =g
a

b

R2
s (r) dr. (28, 29)
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If k is a constant, the modal equations are uncoupled, becoming

ḧs +0v2
s + k

rbAb1hs =
1

rbAbNs g
a

b

f(r, t)Rs (r) dr, s=0, 1, 2, . . . , M. (30)

4. FREQUENCIES OF THE BEAM-SUPPORTED PLATE

A beam-supported rotating plate can be decomposed into three subsystems as shown
in Figure 2. The receptance method is applied here to join the rotating plate and the
beam supports. To apply the receptance method for structural combination, one requires
the structures to have the same shape functions on the connecting line. This is the reason
for the beam functions being used for both beam and plate. It is realized that the radial
dependence of the plate shape functions is slightly different from that of the beam. The
errors are, however, corrected through the boundary residuals and the approach yields
accurate results.

Upon assuming a harmonic line load of the distribution, R0(r) to be applied on the
beam, as shown in Figure 3, one has

f(r, t)=FR0(r) eivt, (31)

and the beam’s response is obtained as

u(r, t)=
FR0(r)

rbAb (v2
0 −v2)+ k

eivt, (32)

Figure 7. Variations of natural frequencies with rotation speeds for L=2, asymmetric placement. (a), (b) as
Figure 4.
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Figure 8. Variations of frequencies with stiffness ratios. L, V* values: (a) 3, 0; (b) 4, 0; (c) 3, 5; (d) 4, 5.

where v0 denotes the beam’s m=0 natural frequency. Note that f(r, t) is a line load and
can be directly applied to the beam equation to give its response. To apply it to the plate,
a corresponding pressure type load is first derived, i.e.,

q(r, f, t)=
FR0(r)

r
d(f−fi ) eivt, (33)

where d(f−fi ) denotes the ith support location. Likewise, the plate response due to the
ith line load is obtained as

u(r, f, t)=
1

rphpp
s
N

n=0

FN0R0(r) eivt

kG0n (v2 −v2
n1)(v2

n2 −v2)
{(vn1vn2 +v2) cos [n(f−fi )]

−iv(vn2 +vn1) sin [n(f−fi )]}, (34)

where k=2 for n=0 and k=1 for n$ 0. vn1, vn2 = nV3Cn denote the (0, n) natural
frequencies of the rotating plate.

Subsequently, the receptances of the beam, denoted b, and of the spinning plate,
denoted a, are obtained as

bii =1/{rbAb (v2
0 −v2)+ k}, bij =0, (35)

and

aii =
N0

rphpp
s
N

n=0

(vn1vn2 +v2)
kG0n (v2 −v2

n1)(v2
n2 −v2)

, aji =Rji (v)+ iIji (v), (36, 37)
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Figure 9. Variations of frequencies with inertia ratios. (a)–(d) as Figure 8.

where

Rji =
N0

rphpp
s
N

n=0

(vn1vn2 +v2) cos [n(fj −fi )]
kG0n (v2 −v2

n1)(v2
n2 −v2)

, (38)

Iji =
N0

rphpp
s
N

n=0

v(vn2 +vn1) sin [n(fj −fi )]
kG0n (v2 −v2

n1)(v2
n2 −v2)

. (39)

The beam’s cross-receptances are zero, since the beams are assumed to be connected to
a rigid shaft and therefore no interaction occurs. The cross-receptances of the plate are
in complex conjugate pairs. This property was discovered by Huang and Hsu through the

Figure 10. Variance of critical speeds with supports stiffness. L values: (a) 2; (b) 3; (c) 4.
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investigation of a rotating plate [14] and a rotating shell [19]. Now, employing the
compatibility and equilibrium conditions at the connections [20], the frequency equation
of the rotating plate with L symmetrical beam-supports is obtained as

b [P(v)]L×L

[Pc(v)]L×L

[Pc(v)]L×L

[P(v)]L×L b=0, (40)

where

Pii = aii + bii , Pij = aij , Pc
ij = aij . (41)

The frequencies that satisfy equation (40) are the natural frequencies of the beam-sup-
ported rotating plate.

5. EXAMPLES

The material and geometric properties of the plate and beam are listed in Table 2. The
individual frequencies of the beam and the plate are given in Table 3. Note that the
beam’s first frequency was calculated with respect to the plate’s neutral surface. The
frequencies show that the beam’s first frequency falls above the plate’s n=2 frequency.
From the theory of receptance it is expected that, after combination, the plate’s lower few
frequencies will be raised by the beam-supports. As the plate rotates its backward
frequencies decrease with rotation and the beam’s stiffening effects become more signifi-
cant.

Numerical solutions of equation (40) for L=2, 3, 4 are illustrated in Figures 4–6, to
show the vibration characteristics. These figures show the variations of the beam-sup-
ported plate’s natural frequencies (solid curves) with the rotation speed for (a) a relatively
low k (2000 N/m2) and (b) rigid supports (k=a). Since the beams were designed to
stiffen the plate, the authors here let the beam be five times more rigid than the plate to
emphasize the effects: i.e., Eb =5Ep and rb = rp . The effects of mass ratios and stiffness
ratios will be discussed in a later section. The natural frequencies (dashed curves) of the
rotating plate are superimposed on to the plots for comparison.

From Figure 4, it is first noticed that at no rotation the supported plate has almost
double the number of natural frequencies. In fact, except for the n=0 mode, there are
two natural frequencies associated with each n number, in which one is the same as that
of the non-supported plate and the other, of higher value, is generated from the supports.
This phenomenon is due to the supports destroying the degeneracy of the plate
frequencies. In a plate, there are two modes, sin (nu) and cos (nu), associated with each
n$ 0 natural frequency. When supports are imposed on the plate one of the modes, say
sin (nu), orients itself such that the supports coincide with the nodal diameters. There-
fore, the original frequency remains. Simultaneously, the other mode, say cos (nu), has
the supports on its anti-nodes and hence a higher frequency.

As to the frequency variations with rotation speed, the frequency curves show veering
and mode exchange phenomena. These curves separate farther apart as the supports
stiffness increases. These phenomena are seen in the point-supports cases too [14].

Some features shown in the figures are worthy of discussion. First, the intersections of
frequency curves with the abscissa correspond to the critical speeds of the plate. As the
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plate is running at one of the critical speeds, the corresponding mode becomes a standing
wave and the plate undergoes a divergent type instability. The unsupported rotating plate
in the examples has its critical speeds at V*p =5·85 (n=3), 6·4 (n=2) and 7·0
(n=4), . . . , etc. In Figures 4 and 5 it is shown that in the L=2, 3 cases the first critical
speed remains at 5·85, since in both cases the n=3 plate mode is retained. Thus, the
supports do not improve the critical speed. In the L=4 case, the first critical speed shifts
to the n=2 mode, since the four rigid supports require four nodal diameters and
therefore the original n=3 mode cannot exist. It is hence realized that the number of
supports should be appropriately chosen if improving the critical speed is the main issue.
The guideline for choosing an appropriate number of supports is that L$ nc and
L$ 2nc , where nc is the first critical mode. For example, the current plate shows the first
critical mode at n=3, and therefore the number of supports cannot be three or six.
Moreover, if the second critical mode (n=2) needs to be shifted, L cannot be 2 or 4.
Another alternative for improving critical speeds is to place the supports asymmetrically.
For instance, Figure 7 shows the L=2 case with two supports separated by 150 degrees.
The first critical speed is slightly lifted to around 6·0.

Moreover, it is interesting that the beam-supported rotating plate has more critical
speeds than the free rotating plate. This means that the supports induce more instabili-
ties. Similar phenomena were observed in the investigation of a rotating plate with point
supports [14, 21].

The second interesting feature is that the frequency curves pass through some but not
all of the crossings of the dashed curves: i.e., the plate’s natural frequencies remain those
of the beam-supported plate. The rules of justification being developed by Huang and
Hsu [9] for a circular cylindrical shell with point supports apply to the present system as
well. Let n1 and n2 be the n numbers of the two curves. Consider case (i), in which n1 and
n2 are both forward modes or backward modes. Then if vn1 − n2v is an integer multiple of
L, the cross-frequency remains as a natural frequency of the supported plate. For case
(ii), in which n1 and n2 are one forward and one backward mode, the cross-frequency
remains if (n1 + n2) is an integer multiple of L.

The third feature observed is that some of the frequency curves start to turn over as
the plate reaches certain rotating speeds (V*q 7·0). At the turning points the sensitivity
(v* versus V*) approaches infinity. This is why the curves show scattering in these
regions. When the rotation speed exceeds that point the eigenvalues become complex
with positive real parts and the plate experiences flutter instability. Those roots are not
shown in the figures since it has been assumed from the beginning in the receptance
method that the system is undergoing harmonic motion (imaginary roots).

In Figure 8 are shown the stiffness ratio effects for V*=0 and 5, with rb = rp . It is
first seen for V*=0 that the n=3 mode in L=3 and n=2, 4 modes in L=4 remain
unchanged with stiffness ratios since the supports are located on the nodal diameters.
However, this phenomenon disappears when the plate rotates because the modes become
traveling ones and the nodal lines no longer fixed in space (except at critical speeds). The
figures show that there are more curves in V*=5 due to frequency bifurcations. The
curves also show that the stiffness ratios affect the higher n modes more than the lower
modes.

The mass ratio effects with Eb =5Ep are shown in Figure 9. As in Figure 8, the mass
affects higher modes more than the lower modes. The variations of critical speeds with
the stiffness ratios are illustrated in Figure 10. It is seen that in the L=2 figure, the
critical speeds associated with n=3 and 2 are not affected by the supports. The first
critical speed appears for n=3 in the L=2 or 3 cases and appears for n=2 in the L=4
case.



.-.   .-. 428

6. CONCLUSIONS

The natural frequencies of a rotating plate with two-side beam-supports have been
investigated. The approach employs a mixed weighted residual method and the recep-
tance method. Numerical examples for L=2, 3 and 4 are illustrated. The results show
that the beam supports raise the plate’s first three natural frequencies provided that the
beam is of the same material and thickness as the plate. As the rigidity of the beams is
increased via increasing E or the thickness, more of the plate frequencies are increased.
The attachment of the beams destroys the originally degenerate plate modes and results
in more distinct natural frequencies. The improvement of the critical speed depends on
the number of beams being selected. If none of the supports coincide with the nodal
diameters of the first critical mode, the beam-supports can improve the first critical speed.
The supports, however, also induce more critical speeds after the first critical speed. The
effects of stiffness and inertia ratios were also studied and the results show that the higher
modes are affected more by the supports.
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